
DIRECT OBSERVATION OF URACIL DICATION AND RELATED DERIVATIVES¹

C. Dale Poulter^{*} and Richard B. Anderson² Department of Chemistry, University of Utah Salt Lake City, Utah 84112

(Received in USA 28 March 1972; received in UK for publication 7 August 1972)

The structures of the mono- and dications from 2,4-dioxopyrimidines have been the focus of considerable attention.³ It is generally agreed that the most stable monocation is protonated at O_4 and the most stable dication is protonated at O_2 and O_4 .^{3C} However, more subtle structural details such as the stereochemistry of the protonated centers and the degree to which monoprotonation at O_4 is preferred have remained obscure. We have obtained complete ¹H NMR spectra which establish the structures of uracil dication and closely related derivatives in HSO₃F-SbF₅-SO₂. From the relative kinetic acidities of the O_2 and O_4 protons of 1,3-dimethyluracil dication, we conclude that the monocation derived from protonation at O_4 is considerably more stable than its O_2 protonated isomer.

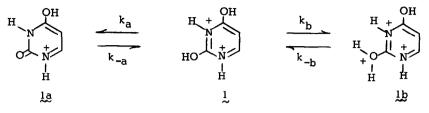
Dications $1-5^{4}$ were prepared by dissolving the corresponding neutral oxo and methoxy derivatives in HSO₃F-SbF₅-SO₂ at -78°. Comparisons of the ¹H spectra of 1-5 indicate only minor variations of chemical shifts

or coupling constants for protons in similar environments, suggesting that replacement of a proton attached to the oxygen or nitrogen atoms with a methyl group does not result in substantial structural changes. Assignments for protons at C_5 and C_6 were based on chemical shifts and coupling constants. The N-H resonances were easily identified because of broadening due to the ¹⁴ N quadrupole and coupling between the protons at N₁ and C₆. The protons attached to O₂ and O₄ appeared as sharp, low field singlets and were assigned by comparing the exchange rates between the O-H protons and solvent for $\frac{1}{2}$, $\frac{2}{2}$, $\frac{4}{2}$ and $\frac{5}{2}$ (see below).

Cmpd.	Chemical Shifts (δ , ppm)							Coupling Constants (Hz)		
	Nı	0 ₂	N ₃	04	C ₅	C۶	J _{1,6}	J _{3,5}	J _{5,6}	
1 ^b	11.55	12.07	12.07	12.01	7.55	8.81	6.4	2.0 ^c	7.6	
2 ^d	4.22 (4.13) ^e	12.20	4.13 (4.22) ^e	12.05	7.53	8.73			8.0	
3 ^p	11.85	4.77 (4.70) ^e	12.27	4.70 (4.77) ^e	7.61	8.97	6.4	2.0	7.6	
₄ ^d	11.57	11.94	12.03	4.71	7.60	8.88	6.5	2.2	8.0	
<u>5</u> d	11.73	4.79	12.22	12.14	7.51	8.83	6.5	2.2	8.0	

Table I. H NMR Spectra of Pyrimidine Dications at 60 MHz^a

^a 1:1 HSO₃F-SbF₅ with added SO₂ at -60 to -80°. ^bRelative to internal CH₂Cl₂ (δ = 5.33 ppm). ^cAssigned by double resonance. ^dRelative to internal tetramethylammonium chloride (δ = 3.10 ppm). ^eUnambiguous assignments for the methyl resonances at N₁, O₂, N₃ and O₄ cannot be made.


In addition to the major resonances listed in Table 1, 1 and 2 gave small singlets at 11.55 ppm (27 % of the 12.01 ppm peak) and 11.53 ppm (11% of the 12.05 ppm peak), respectively. Minor peaks (within 0.2 ppm of the major resonance position) were also found for groups attached to carbon and nitrogen. Under conditions where the ¹H resonance of the O₄ proton in 2 is observed but the resonance at O₂ has merged with the solvent peak because rapid exchange, the minor resonance at 11.53 ppm remains sharp. However, in samples where exchange of the proton at O₄ with solvent results in a considerable broadening of the 12.05 ppm peak, the signal at 11.53 ppm disappears. In addition, the methoxy group of 4 is accompanied by a minor high field component (ca. 15%), while the methoxy group in 5 gives a single peak. The ratios of the peak intensities of major to minor components are larger for 2 than for 1. Since one would expect that introduction of a methyl group at N₃ would lower the syn-anti ratio, ⁶ we propose that the major peaks represent the anti isomers of 1 and 2 (where the proton at O₄ is anti to N₃) and the minor peaks result from their syn counterparts.

As a solution of 2 in 1:1 HSO₃F-SbF₅ is warmed from -60 to -20°, the low field O-H resonance broadens and merges with the solvent peak, while the high field O-H peak remains sharp. The OH proton of 4 exhibited a temperature dependence similar to that of the low field resonance of 2; whereas, the sharp peak due to the No. 36

proton at O₄ in 5 did not broaden between -60 and -20°. Thus, we conclude that proton exchange occurs more readily at O₂ in dications 1 and 2. In 1:1 HSO₃F-SbF₅ at -60° the barrier for exchange (ΔF^{\ddagger}) at O₂ is 13.5 kcal/mol.

Two limiting mechanisms which could account for proton exchange at O2 are shown below.

If one makes the reasonable assumption that k_{-a} is large with respect to k_a , then the rate at which la is formed is directly proportional to the relative equilibrium populations of 1 and 1a. The same argument can be applied to exchange by path b. Since 1, 1a and 1b differ in the degree of protonation, a reduction in acid strength should increase the equilibrium concentration of 1a with respect to 1 and produce a concurrent decrease in the equilibrium concentration 1b. Therefore, if exchange occurs by deprotonation-protonation (path a), the observed rate should be inversely proportional to solvent acidity. Although a precise acidity scale for mixtures of HSO₃F and SbF₅ is not known, the acidity of HSO₃F (H_o \cong -14.5) is greatly enhanced upon addition of SbF₅ (estimated H_o \cong -17.5 for 1:1 HSO₃F-SbF₅). Thus, the data in Table II support a deprotonationprotonation mechanism for proton exchange at O₂.

ISO3F : SbF5		k (se	c ⁻¹)
	T, ℃	0,	04
1:1ª	-60	.05 ^b	с
1:1ª	-41	1.4	с
1:1 ^a	-30	6.3	c
1:1 ^a	-25	11	с
1:1 ^a	-21	36	c
1:1 ^d	-16.5	2300	c
1:0.75 ^e	-60	2.4	с
1:0.50 ^e	-60	95	c
1:0.25 ^e	-60	f	10
1:0.0	-60	f	f

Table II. Rates of Proton Exchange in 1,3-Dimethyluracil

^a6.8 mol of HSO₃F/mol of 2. ^bExtrapolated from rates at -21 to -41°. ^cToo slow to measure. ^d3.8 mol of HSO₃F/mol of 2. ^e > 6 mol of HSO₃F/mol of 2. $_{\text{Too}}^{\text{f}}$ foo fast to measure.

When the molar ratio of SbF₅ to HSO₃F is lowered to 0.25, a broadening of the O₄ proton resonance suggests that exchange with solvent has also become rapid <u>via</u> a deprotonation mechanism involving proton loss at O₄ instead of O₂. Although we have not yet obtained accurate rate data for exchange at O₂ and O₄ in a common solvent, the kinetic acidity of the proton at O₂ is at least 2000 times that of the O₄ proton.¹² If the rates of protonation at O₂ and O₄ are similar, then monocation <u>1a</u> is at least 3.9 kcal/mol more stable than its O₂ protonated isomer in 1:1 HSO₃F-SbF₅.

References

- * Address inquiries to this author.
- Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, and PHS Grant RR07092 for support of this work.
- 2. University of Utah Research Fellow.
- 3. (a) W. E. Cohn in E. Chargaff and J. N. Davidson, "The Nucleic Acids," Vol. I, Academic Press, 1955, p. 217; (b) R. Shapiro and M. Danzig, Biochem., 11, 23 (1972); (c) von R. Wagner and W. von Philipsborn, <u>Helv. Chim. Acta</u>, 53, 299 (1970); (d) A. R. Katritzky and A. J. Waring, <u>J. Chem. Soc</u>., 1540 (1962); (e) H. M. Sobell and K. Tomita, <u>Acta Cryst</u>., 122 (1964); (f) E. P. Parry, D. H. Hern and J. G. Burr, <u>Biochim. Biophys. Acta</u>, 182, 570 (1969); (g) O. Jardetzky, P. Pappas and N. G. Wade, <u>J. Amer. Chem. Soc</u>., 85, 1657 (1963); (h) A. R. Katritzky and A. J. Waring, <u>J. Chem. Soc</u>., 3046 (1963).
- 4. Only one of several possible resonance structures are shown for each mono- and dication.
- 5. J. L. Wong and D. S. Fuchs, <u>J. Org. Chem.</u>, <u>35</u>, 3786 (1970).
- This assumes that the two isomers are at equilibrium although a kinetic controlled protonation should show a similar trend.
- A similar phenomenon was noticed for 1 but the N-H resonances complicated analysis of the exchange rates.
- Calculated from the rate constant at -60° in 1:1 HSQ₃F-SbF₅ listed in Table II. M. Saunders, <u>Tetrahedron Letters</u>, 1699 (1963).
- 9. One could also envision exchange at O₂ which proceeds through a transition state similar to 1b; however, the arguments presented against 1b would apply to a "triprotonated" transition state as well.
- 10. R. J. Gillespie, T. E. Peel and E. A. Robinson, <u>J. Amer. Chem. Soc</u>., <u>93</u>, 5083 (1971).
- 11. G. C. Levy, J. D. Cargioli and W. Racela, *ibid.*, *92*, 6238 (1970).
- 12. We should be able to detect exchange with a rate constant as low as 1 sec⁻¹.